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1 Introduction 

 

Robin represents an easy to use graphical interface for microarray (Affymetrix GeneChip, 

other single channel (e.g. Agilent) and two color) analysis functions from 

R/BioConductor. It is available on all Java-enabled computer platforms that are also 

supported by the R Development team. The main objective of Robin is enabling the 

individual biologist to use state of the art microarray preprocessing and analysis tools that 

are provided by the BioConductor project without in-depth knowledge of programming 

in R. To this end Robin provides documented, standard workflows for the quality 

assessment, normalization and statistical analysis of microarray data originating from 

many commonly used technical platforms. These workflows should allow for the analysis 

of most experimental setups that are conducted in microarray experiments carried out in 

labs around the world.  

This manual gives a detailed guideline through the Robin analysis workflows for 

different types of microarray experiments (e.g. Affymetrix, two color, Agilent single 

channel…) and explains the concepts and methods of quality assessment, normalization 

and analysis of differential gene expression. The output that is generated by Robin can 

directly be imported into meta-analysis tools like MapMan and PageMan for further 

visualization and analysis of the data in a biological context or into Microsoft Excel. 

1.1 In brief: What can Robin do for you? 

You can use Robin for… 

(i) quality assessment of your data 

(ii) normalization of your microarray data 

(iii) detection of differentially expressed genes 

(iv) preparation of the data for an import into MapMan and/or excel 

(v) generation of informative plots on your experiment 

 

2 Preconditions and Glossary 

2.1 Commonly used Terms 

Robin helps in evaluating microarrays using advanced normalization strategies and 

statistics from R/BioConductor. Nevertheless, please bear in mind that most statistics and 

most normalization techniques make some strong assumptions and have some general 

terminology. 

When dealing with microarrays, almost always one will deal with values which have 

been transformed by taking the logarithm to the base of 2. The reason is, that by logging 

the data, the data becomes roughly normally distributed (Gauss shaped), which then 

allows using tests, like student’s t-test, making assumption about standard deviations etc.. 

Unlogged data is almost always NOT normally distributed, meaning t-tests are NOT 

applicable (even though they might still perform reasonably well). Thus, a difference of 1 

unit means a two-fold increase or decrease in expression. 



Often data is not represented as treatment value and control value, but instead of M and 

A. Here, M stands for treatment minus control (on the log scale, being a division on the 

normal scale), and A stands for (treatment plus control)/2. So M is a measure of your 

treatment effect and A of the expression level of that gene. 

(Actually another reason for using M and A values is that it is easier to see if values 

deviate from the zero line as if they were deviating from a line with a slope of one. Please 

see Figure 1)  

 

 

2.2 Affymetrix Files 

 

When dealing with Affymetrix chips, you will be confronted with .CEL and .CDF files, 

the former describes the scanned intensity for every spot (usually there are 2 times ~11 

spots per gene). The CDF file describes where the spots for a probe-set are to be found on 

the chip, since these are not clustered to compensate for local effects such as bubbles, 

smears, etc. 

 

2.3 Other single channel and two color data files 

Data derived from other microarray experiments may come in a variety of different file 

formats depending on the microarray scanner hardware and software used. Robin 

supports direct import of generic file types that contain the data in text files with each 

column of data points separated by a special character (e.g. semicolon, TAB etc.). Import 

of generic data is managed by a generic data import dialog that allows you to specify 

which column contains what kind of data. Using this dialog it should be possible to 

import arbitrary microarray data. Since the generic import mechanism does not work for 

Figure 1: Comparison of MA plot versus Scatter plot of normalized expression values. The left panel 

shows an MA plot of the log2-fold changes when comparing two chips (M) plotted on the Y axis and 

the average log2 intensities (A) plotted on the X axis. On the right panel the same two chips’ 

expression values have been plotted against each other. The MA plots gives a clearer representation 

of the cganges in gene expression when comparing the two chips. 



some data formats (like the tab-separated raw text files produced by Agilent scanners), 

customized settings have been supplied to allow import of these formats. Please set the 

import type on the file import panel according to your microarray data type if it is listed. 

If not, try generic import settings. If these fail we will be happy to create a customized 

filter for your data, if you supply us with a sample of the format. When working with 

generic data you’ll also have to know the layout of the chips you want to analyse – 

presets for commonly used chip types are already included in Robin. This list can be 

completed with your custom layouts. 

 

2.4 Assumptions 

The strongest assumption probably being, that not much changes in your experiment. I.e. 

the assumption is that let’s say not more than 5, 10 % of your genes are changing and that 

thus everything is comparable. 

If this assumption is violated, you may not get satisfactory results, or worse wrong 

results. To demonstrate this issue, just consider the probably oldest, easiest 

normalization, namely median centering. Here, one just subtracts the median of one 

experiment from each data point. In this extreme example, Gene1 and Gene2 are 

completely switched off. 

 
 XP1 XP2 

Gene1 10.2 0 

Gene2 3.2 0 

Gene3 4.5 4.7 

Gene4 7.8 7.9 

Gene5 9.9 9.8 

Gene6 10 10.2 

median 8.85 6.3 

Table 1: Experiment before normalization 

 

 
 XP1 XP2 

Gene1 1.35 -6.3 

Gene2 -5.65 -6.3 

Gene3 -4.35 -1.6 

Gene4 -1.05 1.6 

Gene5 1.05 3.5 

Gene6 1.15 3.9 

 Table 2: Experiment after normalization 

 

As an effect, Genes 5 and 6 seem to be upregulated, even though they were unchanged. 

These effects would disappear in this case, if also some genes were turned on, which 

often might be the case, but if you have strong suspicions, that very many genes change, 

and/or that these change in one direction only, you might have to consult an expert 

statistician. 

 



3 Walkthroughs 

The following sections of the manual provide step-by-step walkthroughs through 

microarray data analysis using Robin. Since Affymetrix data analysis is the most 

common task it is described in all detail. The workflows for two color and generic single 

channel analysis resemble the Affymetrix workflow and are hence described in an 

abbreviated fashion, focusing on the steps that are different from the Affymetrix analysis 

procedure. 

3.1 Using Robin to analyze Affymetrix microarray data 

 

Firstly, when using Robin, you have to localize your CEL files. Robin comes preinstalled 

with specialized CDF files for a small selection of organisms (arabidopsis, maize, lotus, 

yeast etc.), when dealing with other organisms, you will need an internet connection, so 

Robin can use the Bioconductor framework to install missing CDF files. The INFO 

button can be used to display some details about the imported CEL files such as 

microarray type, algorithm parameters and all the technical data included in the header 

section of the CEL file. 

 

 
Figure 2: Importing CEL files into Robin 



 

After having selected your CEL files, you are presented with various options to 

investigate into the quality of the arrays.  

 

 
Figure 3: Quality control options available for Affymetrix(r) arrays in Robin. 

The ”expert options“ box is not shown by default – the preselected values there can be 

used to correctly analyze most standard experiments. If you activate the expert settings 

box you can explicitly choose which normalization method, p-value correction and 

general analysis strategy is to be used on your data.  

 

3.1.1 Quality Control 

After running the chosen quality control methods on your data, Robin will present a 

summary page showing thumbnails of the generated plots (see Figure 4). Clicking on the 

individual rows will open the images in full size and offer a possibility to save the image. 

PLEASE NOTE: You don’t have to open each image individually and save them 

manually – all generated quality control plots will automatically be saved together with 

the results of your analysis. 



 
Figure 4: Quality analysis summary page. 

Some of the quality assessments functions may have issued warnings – clicking on the 

small warning icon will open an info panel that tells you more specifically why the 

warning was generated. For example the RNA degradation analysis may have identified 

chips that display slopes higher than the accepted threshold or whose slopes deviate by 

more than 10 per cent from the median slope (see section 4.1.5 for details). Individual 

chips displaying an extraordinarily bad quality in the PLM-Plot (see 4.1.3) or MA Plot 

(see 4.1.2) can be excluded from further analyses by checking the “Exclude” box. Section 

4 describes all available quality control methods in detail and gives examples of good and 

bad quality check results. 

 

3.1.2 Experiment design and statistical analysis 

The next step in the analysis workflow is the assignment of the chips to groups of 

biological replicates. NOTE: Robin analyses all replicates as biological replicates – there 

is no way implemented yet that allows for proper consideration of technical replicates. 

Please be aware that if technical replicates are imported the statistical test outputs will not 

be sound any more. You can choose a descriptive unique name for each group of 

replicates (like “mutant”, “wildtpye” etc : see Figure 5). After sorting the chips, clicking 

“next” will proceed to the graphical experiment designer. Here the user can set up the 

comparisons that are to be made by CTRL-click-dragging connections between the 

groups (see Figure 6). Direct comparisons e.g. wild type against mutant samples are 

defined by simply dragging an arrow from the “wildtype” to the “mutants” box on the left 



Figure 5: Sorting of replicate experiments into named groups. 

 

panel of the graphical designer screen (Figure 6.1). If experiments with more than one 

varying experimental condition are to be analysed the user can combine groups into meta 

groups and define comparisons of meta groups by dragging connections between them. In 

the example experiment shown in Figure 6, mutant and wild type plants were compared 

both under stress and normal conditions  - so the experiment varies in two dimensions 

with genotype (wild type or mutant) being one factor and treatment (stress, no stress) 

being the other. The first four direct comparisons (Figure 6.2) will yield the genes that are 

responding to the treatment in the wild type (“wildtype – wildtype stressed) and the 

mutant (“mutant – mutant stressed”), which genes respond differently between the 

genotypes under normal conditions (“wildtype – mutant”) and stress and which genes 

generally respond differentially in the two genotypes (“(wildtype – wildtype stressed) – 

(mutant – mutant stressed”) – this is also referred to as the interaction term; see Figure 

6.3).  

 

 

PLEASE NOTE: The direction of the arrow specifies the direction of the 

comparison. When the arrow points from the wildtype to the mutant this should be 

read as “wildtype minus mutant”. Genes showing a higher expression in the mutant 

when compared to the wildtype will accordingly yield a negative log2-fold change 

value as a result! 



 
Figure 6: Setting up the experiment using Robins graphical designer. 

 

The experiment designer panel also offers an expert option box that enables the 

experienced user to influence specific parameters of the statistical inference. By default, 

the normalization method used for the main analysis will be the same that was chosen on 

the quality check panel (see Figure 6; if nothing was changed the default will be robust 

multi array averaging - RMA) to ensure consistency between the quality check and 

differential expression statistics. The user can define significance cut-offs like discarding 

genes that show a log2 fold change in expression lesser than 1 (i.e. less than 2-fold up- or 

down regulation) and genes showing a p-value greater than e.g. 0.05 (i.e. 5% false 

discovery rate is accepted). A choice of multiple testing methods is available for the 

inference of differentially expressed genes:  

 

1) “separate” – Does the multiple testing for each comparison (contrast) separately. 

Using this method, each specific comparison will always give the same result 

irrespective of the set of comparisons being made in the analysis. It is the simplest 

method available as it does not consider multiple testing adjustment between the 

comparisons and assumes the same raw p-value cut-off for all comparisons 

(which might be very different). 

 



2) “global” -  Implements multiple testing correction across all comparisons and 

probes simultaneously ensuring a consistent p-value cut-off across all 

comparisons. 

 

3) “hierarchical” – Does p-value adjustment first for all genes and then across 

comparisons, which offers more statistical power to control the family-wise error 

rate when using the method described by (Holm, 1979) for p-value adjustment. 

 

4) “nestedF” – First does p-value adjustment for all genes and uses a nested F test to 

classify the comparisons as significant or not for the selected genes. 

 

 

Users that are familiar with R programming can activate the “preview R script”-mode in 

which all scripts generated by Robin are shown in an internal editor for review and 

modification prior to execution. Even if this option was not chosen, all R scripts 

generated by Robin will be written to the “source” folder in the final output directory. 

When the design step is completed, clicking the “Next” button will first open a file 

browser asking for a location to save the results to and then move on to the execution of 

the analysis. After completing the calculations, Robin will show a summary of the 

warnings generated during the workflow (if any) and offer options to exit, restart or 

modify the current experiment. 

 

 



 

 
Figure 7: Two color data import wizard. Robin automatically removes header sections from different 

tabular file formats and extracts the column headers. The user has to define which column contains 

which data (1) by assigning the proper column names to the required column fields. After choosing a 

chip layout from the list of layout presets (or defining a new layout and saving it as a preset; see 2), 

the user can save the import settings (3) and reuse them later when importing data of the same 

format. 

3.2 Analysing two-colour microarray data 

The first step when working with two colour microarray data is data import. Robin 

provides a wizard dialog that helps the user to import various import formats with the 

only restriction that the data has to be provided in plain text format (.csv, .tab etc). 

Loading MS Excel worksheets directly is not supported (yet). Aside from this any kind of 

tabular data can be used. When importing data, the user only needs to know which 

column separator was used. Layouts of frequently used microarray types are included as 

clickable presets in the layout preset list – if the layout of your favorite chips is not 

included in the list, you can define a new layout and save it for later use. The minimal 

data required to analyze two color chips is an identifier uniquely identifying the oligos / 

cDNAs spotted on the chip and the red and green channel foreground and background 

signal intensities. The table view on the left half of the import dialog facilitates choosing 

the column containing the required data, and after specifying the column names under 

“Required columns” the information needed to import the data is complete. Robin will 

create copies of the input files that are stripped off any header text and checked row-wise 



for data format consistency. The processed input files will be placed in a separate folder 

in the output folder.  

 
Figure 8: Defining the RNA targets table for two-color microarrays 

 

The next piece of information Robin needs is which different RNA samples (RNA 

targets) have been hybridized to which channel on which chip. This can be conveniently 

entered on the targets table panel (see Figure 8). Robin will run some checks on the input 

to assert consistency.  Analogous to Affymetrix data analysis the next panel provides a 

choice of quality check methods adapted to two color arrays and an expert settings box 

granting deeper control of the analysis parameters (See Figure 9).  

Each step of the normalization process, namely background correction, within-array 

normalization and between-array normalization can be configured separately to o 

 

Quality check results will be summarized in a list resembling Figure 4. Depending on the 

amount of factors being varied in the experiment (i.e. the amount of different RNA 

samples hybridized) clicking “Next” on the quality check panel will either directly start 

the main analysis (e.g. in a simple two sample comparison) or open the graphical 

experiment designer panel (see Figure 6). Experiment layout is done exactly as for 

Affymetrix arrays – please refer to section “Experiment design“ for a detailed 

description. 

 

 



 

 

 
Figure 9: Quality check and expert settings for two color microarrays 

 

 

 

 

 

3.3 Analysis of generic single channel arrays (e.g. Agilent) 

Analysis of generic single channel arrays resembles the workflow for two color chip 

analysis in the largest part. The flexible import dialog (see Figure 10) allows for 

configuration of any tabular text file based data. Please note that you have to specify 

whether the data originates from an Agilent scanner prior to import to make sure that 

Robin can correctly remove the header section of the data files. Robin will process the 

input according the configuration chosen in the import dialog and create cleaned-up 

working copies, leaving the original data untouched. In the next step, analogous to 

Affymetrix data analysis, several assessment methods can be chosen to investigate into 

the chips’ quality. Since most generic single channel chips are not based on a probeset 

design (several probes per target) but only contain one probe per target transcript, the 

probeset specific quality checks available for Affymetrix arrays (i.e. PLM-based 

analyses, RNA degradation plot) cannot be used.  

 



 

Following the review of quality check results as depicted on Figure 4 and described in 

section 3.1.1, the individual chips have to be organized into groups of biological 

replicates. Depending on the statistical analysis strategy chosen (rank product- or linear 

model-based) two or more groups can  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Import dialog for generic single channel microarray data. 



 

 

 

4 Chip quality assessment 

 

When analysing your own primary microarray data or reanalysing data that is publicly 

available the first step is quality assessment. Individual chips displaying a very bad 

quality might strongly impact the final results of your microarray experiment and hence 

lead to incorrect biological assumptions. Chip quality can be affected on different levels 

and Robin offers a range of informative plots that cover many different aspects of the 

chip data quality. In the following section these methods will be described in detail. 

 

4.1 Affymetrix chip quality checks 

 

Figure 11: Quality check and expert settings panel for non-Affymetrix single channel microarrays 



4.1.1 Analysis of signal intensity distribution 

 

  

Figure 12: Box plots (left panel) and smoothed signal intensity densities (right panel). The red circles 

highlight individual chips that show strong outlier behaviour indicating low quality. 

Box plots of the unnormalized expression values on each chip give a global overview of 

the signal intensity distributions. Ideally all chips should have a comparable distribution 

already before normalization (see Figure 12, left panel). Another way to visualize the 

distribution of signal intensities is plotting smoothed histograms of the (log2) signal 

intensity of all perfect match (PM) probes (see Figure 12, right panel). The red circles 

point out outliers.  

 

4.1.2 MA plots 

 

Figure 13: MA plots and box plots. The left panel shows an unobjectionable behaviour while the data 

displayed on the right panel strongly deviates from normal values. In the box plot (see Figure 12) the 

two highlighted chips are also clearly showing an outlying intensity distribution. 



 

On the MA plots, the average log2 probe signal intensity A =  * (logR + logG) is 

plotted against the log2 fold change in expression M = logR – logG. In the case of 

Affymetrix and other single channel chips G is a synthetic chip created from the median 

expression values of all chips in the input. For two-color chips the M values are 

calculated as the log2-fold ratio of the normalized red and green signal intensity. Based 

on the assumption that most of the genes will not show differential expression. Robin will 

issue a warning if more than 10% of the genes show a greater than two-fold change (log2 

fold change of 1, resp. M >= 1 or M <= -1) in expression. The actual percentage of genes 

showing a higher than two-fold change in expression is shown on the plot as “%>LFC1”. 

To capture artifacts that are related to the signal intensity A, a lowess fit curve over the 

data points is calculated (see Figure 13). If the integral of the absolute values of the 

lowess curve over the zero line is greater than 1 another warning is generated indicating 

that there seems to be a signal intensity-dependent artifactual effect (the integrals value is 

shown on the plot as “I”). The median M value also given on each plot is usually less 

informative as can be seen on the right panel of Figure 13 where the median shows a 

normal value while the data quality is severely affected. MA plots are available for all 

microarray types. 

 

 

4.1.3  False color images of probe level model weights 

A linear model is fitted (using RMA style, more later) to your probeset (i.e. your 11 

probes), using the boundary, that the effect of all probes in each probeset is zero.  

Weights are attached to the different probes in each probeset, low weights are coloured in 

green (i.e. they were not important for the model), and high values in white. 

 

 
Figure 14: PLM weight image. Here a potential artifact is visible in the upper right corner. 



For some examples of probe level model (PLM) image plots showing different artefact 

have a look at: http://plmimagegallery.bmbolstad.com/. The weights applied to each 

probe are visualized as pseudo chip images (see Figure 14). Areas on the chip that show 

consistently low probe weights might indicate technical problems cause e.g. by washing, 

dust on the chips or scanner malfunction. PLM-based analyses (pseudo images, NUSE 

and RLE, see next section) are only available for Affymetrix chips. 

 

4.1.4 Normalized unscaled standard error and relative logarithmic expression 

The normalized unscaled standard error (NUSE)  plots show the standard error estimates 

of probe level models for each probeset standardized across all chips so that the median 

standard error for each probeset is 1. The NUSE plot visualizes the distribution of the 

standard errors for each individual chip. Chips showing a consistently increased standard 

error are probably of lower quality. The relative logarithmic expression (RLE) is 

computed by comparing the logarithmic expression of each probeset on each chip to the 

median expression of this probeset across all chips. According to the assumption that 

most of the genes are not differentially expressed under a given treatment, the median 

RLE value should be zero. Individual arrays showing a deviation of the median from the 

zero line and/or increased spread on a box plot of the RLE values are presumably of low 

quality. 

 

 
Figure 15: Relative logarithmic expression and normalized unscaled standard error plots. Note the 

two arrays that are consistently showing low quality behaviour across both plots 

 

 

4.1.5 RNA degradation 

In each probeset the probes are ordered directionally from the 5’ to the 3’ end. Average 

probe intensities are plotted by probe number. The resulting plot visualizes the global 

RNA degradation state of the samples used. Generally, RNA degradation is more active 

at the 5’ terminus  - signal intensities of the probes closer to this terminus are accordingly 

lower. If the slope of the probe intensity curve is exceeding a certain threshold value or 

the slopes of individual chips are deviating from the median by more than 10% Robin 



issues a warning (see Figure 16 ). As this kind of analysis relies on probesets consisting 

of more than one probe, it is only available for Affymetrix arrays. 

 
Figure 16: RNA degradation plot. 

 

4.1.6 Scatterplots 

If the scatter plot option is chosen, Robin plots pair wise comparisons of the normalized 

expression values of all possible combinations of two chips. NOTE: Using this feature on 

a large number of input chips will generate a lot of images and might increase calculation 

time and memory demand significantly. The scatter plots are useful for assessing whether 

two replicate chips are showing similar behavior. If they do, the points should lie on a 

perfect diagonal line. Replicate samples that are not showing this behavior strongly 

suggest a problem (e.g. accidentally swapped or mislabeled samples, technical problems 

on one individual chip, strong RNA degradation effects etc. ) 

 

 



 
Figure 17: Scatter plots of normalized expression values. The left panel shows two biological 

replicates of acceptable reproducibility plotted against each other while the right panel shows two 

chips with very different expression profiles. Identical values are plotted on the blue (0) line; The red 

lines indicate a log2-fold difference of 1. 

 

4.1.7 Principal component analysis and hierarchical clustering 

The data generated in a microarray experiment can be understood as a matrix of p 

columns, where p is the number of chips used, and n rows, where n is the number of 

genes (probesets, probes) measured. Such a dataset could be visualized as a set of n 

points in a p-dimensional space. The principal component analysis reduces the 

dimensionality of the dataset by finding a small number of linear combinations of the 

data that explain most of the variance in the dataset. These are the principal components 

(PCs). The principal components are ordered by the amount of variance explained and 

subsequently the first two PCs are plotted against each other. The example on the right 

panel of Figure 18 shows a PCA on eight samples, six of which are grouping closely 

together on two groups of three replicates while the last two are completely unrelated.  

 

The hierarchical clustering method performs a clustering of the Pearson correlation of 

raw normalized expression estimates for each chip a the distance measure for the 

clustering. Chips that show similar expression profiles should cluster together when using 

this approach. The results are shown as a dendrogram where the branch length depicts 1-

correlation score. The hierarchical clustering gives an overview of the internal structure 

of the data and identifies experimental conditions that generate similar global responses 

in gene expression. Replicate chips should always cluster closely. Accordingly, the 

samples six samples belonging to two groups of three replicates form distinct clusters 

while the last two are very distant from them and each other. The PCA and hierarchical 

clustering analyses are only available for Affymetrix and generic single channel 

experiments. 

 



 
Figure 18: Principal component analysis and hierarchical clustering of normalized expression values. 

The red circles highlight chips with strongly deviating behavior. 

 

4.2 Two color microarray quality checks 

Quality check methods that are specific to two color arrays are described in the following 

section. Some quality checks that can be run for all chip types – these will not be 

described again below (e.g. MA plots). 

 

4.2.1 Image plots of two-color background intensities and unnormalized M values 

 

 
Figure 19: Two-color microarray background signal intensities and unnormalized M value plots. 

 

The background signal intensities measured on two-color and generic single channel 

chips (not shown here) can be visualized as false-color images. This is very useful for the 

identification of washing artifacts like those visible on the two left plots in Figure 19. 

Both color channels display obvious traces of droplets, so called washing artifacts. In the 

worst case these artifacts carry over to the foreground signal and cannot be eliminated by 



background subtraction. If this happens they would also be visible on the M value plot 

shown on the right side of Figure 19 (in the example given, however, this is not the case). 

The M value plots is simply a false-color image of the merged red and green foreground 

signal intensities measured on the chip prior to normalization.  

4.2.2 Overview of two color signal intensity distribution 

 
 
Figure 20: Two color microarray signal intensity distribution assessment. Upper left: Smoothed 

signal intensity distributions are shown for the red and green channel separately for each chip. 

Lower left: Box plots of the raw foreground signal intensities for each chip and color channel. The 

left hand plots show data prior to normalization while the plots on the right half show normalized 

data. The title of the right hand intensity distribution plot reflects the chosen normalization settings. 

For the shown example within-array printtiploess normalization without background correction and 

between-array scaling were performed. 

 

Analogous to the box plots and smoothed histograms that are generated for Affymetrix 

arrays (see section “Analysis of signal intensity distribution” and Figure 12). 

 

 



5 Data normalization 

 

When analyzing microarray experiments, the raw data obtained by scanning probe 

intensities on the chips can be strongly influenced by different technical effects. These 

can be different levels of background signal due to inhomogeneous washing, 

systematically deviating probe signal intensities due to different scanner settings (or even 

same settings on different devices), probe-specific hybridization affinity effects etc. 

To make sure that the microarrays you are going to analyze in a differential expression 

experiment can actually be compared it is very important to eliminate these effects. This 

process is called normalization. Since the first application of microarray technology many 

different normalization techniques have been proposed - the most widely used ones are 

available in Robin. If your favorite method is not among them feel free to contact us. 

 

Generally, all normalization methods consist of two (three in the case of Affymetrix 

GeneChip microarrays) major steps: (I) background correction, (II) normalization of 

background-corrected probe level data and (III) summarization of probe-level data to 

yield one expression measure per probeset. 

5.1 Single channel microarray normalization 

5.1.1 Normalization methods for Affymetrix arrays 

5.1.1.1 RMA (Irizarry et al., 2003) 

The robust multi-array average (RMA) normalization method proposed by (Irizarry et al., 

2003) has been widely used and accepted as a well-performing approach for inference of 

differential gene expression from Affymetrix GeneChip(R)-based experiments. The 

RMA procedure first does background correction based on the assumption that the 

background signal is normally distributed while the real probe signal is exponentially 

distributed (convolution model). The background-corrected data is then quantile 

normalized. Quantile normalization assumes that the distribution of gene abundances is 

nearly the same across all chips. A reference distribution is created using the pooled 

intensity probe distribution on all chips. To normalize each chip, the quantile of each 

intensity value is computed and then the original value is transformed to the 

corresponding quantile’s value on the pooled reference chip (that is created by averaging 

the values of each probe across all chips in the experiment). In the last step, a linear 

model is fitted to the corrected, normalized and log2-transformed probe intensities: 

Yijn =μin + jn + ijn,i =1,...,I,n =1,...,n  with j  being a probe affinity effect, i 

representing the log2 expression level on array I and ij representing a noise error with 

mean = 0. The model parameters are estimated using the median polish procedure that is 

robust against outliers.  

  

5.1.1.2 GCRMA (Wu et al., 2004) 

The GCRMA method adds a more refined background adjustment to the standard RMA 

normalization. This background adjustment method models the different hybridization 

affinities for each PM-MM probe pair based on its nucleotide sequence which results in a 



more precise estimate of the background. While the standard RMA approach ignores the 

MM probe-derived signal, GCRMA subtracts a shrunken MM value that was corrected 

for its binding affinity from the PM signal. More specifically, the model assumes: 

PM =O
PM

+ N
PM

+ S  and MM =O
MM

+ N
MM

+ S  with O being the optical noise, N 

being the non-specific binding effect and S being proportional to the real concentration of 

the target transcript. Hence, the model takes into account the observation, that the MM 

signal may contain real transcript signal.  

5.1.1.3 MAS 5.0 (Affymetrix Microarray Analysis Suite 5.0 ) 

In contrast to the other normalization methods described here, MAS 5.0 works on a single 

chip basis. Briefly, each chip is divided into 16 (4x4) equally sized grid regions and a 

background and noise signal value is calculated based on the lowest 2% of measured 

probe intensities for each grid region. The probe intensities in each grid block are 

adjusted to the weighted average of the background signal where the weight is dependent 

on the (euclidean) distance of the probe to the centroid of the grid block. In the next step 

the perfect match (PM) and mismatch (MM) probe pairs are considered. The original 

purpose of the PM/MM probe pair design was to use the MM probe signal intensity as 

unspecific signal intensity and subtract it from the PM probe to generate a reliable probe 

signal. However it turned out that up to 30% of the MM probes display a signal intensity 

that is higher than the corresponding PM probe so that a simple subtraction would yield 

negative values. To work around this problem, the so called ideal mismatch (IM) was 

introduced. If the PM intensity is larger than MM, IM equals the MM value. In cases 

where PM=MM or PM<MM, IM is calculated using the PM value and a specific 

background (SB) value that is computed by taking a robust average of the log ratios of 

PM and MM. The summarized expression measure is computed using a Tukey biweight 

of PM and IM values in each probe set on the log2 scale. In MAS 5.0, the normalization 

is performed after summarization. A scaling normalization is used to adjust intensity 

values on each array. MAS 5.0 provides final expression values on the original scale. The 

Robin analysis workflow takes this into account and logarithmizes the values prior to 

statistical analysis to provide uniform output independent of the normalization method 

chosen. For a more detailed description of the method, please see the Affymetrix 

technical documentation (Affymetrix GeneChip® Expression Analysis, 2004). 

 

5.1.1.4 PLIER (Affymetrix,  Probe Logarithmic Intensity Error Estimation, 2005) 

The PLIER method was developed by Affymetrix as an improved estimator of signal 

intensity. It is, unlike MAS 5.0, a multi-array method but includes the summarization 

algorithm that is also used in the MAS 5.0 method. Like RMA it uses a global model but 

bases this on a different set of assumptions. Unlike RMA it takes the MM probe signal 

into account when computing expression values. The observed PM and MM probe signal 

intensities for the ith probe on the jth array are assumed to be E(PMij ) = μij = aic j+Bij  

and E(MMij ) =Bij  with ij being the binding level of probe i and array j, ai being the 

probe specific binding affinity, cj the RNA concentration in the sample hybridized to 

array j and Bij the background binding intensity of probe I on array j. 



PLIER also  assumes that the error of the PM and MM probe signals are reciprocal (while 

MAS 5.0 assumes them to be equal): ij

PM
=
1

ij

MM
 with ij

PM  being the error of the ith 

perfect match probe in the jth array and ij

MM  the error of the corresponding mismatch 

probe. This results in the following equation: 
ij =

aic j + (aic j ) + 4 pmijmmij

2pmij

. 

Based on the above assumptions, the PLIER algorithm computes the values of a  and c by 

setting the residual r = log( ) to zero using a minimization of a robust average of the r
2 

values. PLIER performs slightly better than MAS 5.0 when comparing the analysis of 

spike-in experiments where RNA of know concentration was added to the sample, 

possibly due to a better error estimation procedure. For further details and an in-depth 

discussion of the PLIER algorithms and performance, please see Affymetrix’s Guide to 

PLIER esitimation, 2005 and Therneau and Ballmann, 2008. 

5.1.2 Normalization of generic single channel and two color arrays 

Since most of the non-Affymetrix microarrays do not adopt a probeset design where 

multiple probes are matching one target transcript, the summarization step necessary for 

Affymetrix raw data is omitted. The two remaining steps, background correction and 

normalization, can be flexibly configured according to the experiments’ requirements and 

users’ preferences. 

 

5.1.2.1 Background correction 

Several methods to correct the measured probe intensity for background signal intensity 

are available. The background signal intensity values themselves have to be provided in a 

separate column in the raw data file and have to be specified upon import of the data 

(please see 3.2 and 3.3). Aside from “subtract” all background correction procedures are 

designed to produce positive corrected signal intensities. 

 

 “subtract”– Simply subtracts the background intensities from the foreground 

intensity values. 

 

 “half” – All foreground signal intensities that are less than 0.5 of the original 

intensity after background subtraction will be set to 0.5 of the uncorrected value.

 

 “minimum” – Values that are zero or negative after simple background 

subtraction are set to 0.5 times the smallest positive corrected value.

 

 “edwards” – Uses a log-linear interpolation to adjust low intensity values (see 

Edwards, 2003)

 

 “normexp” – Uses the same convolution model that is applied in the RMA 

method to model the background intensity with two modifications to make it 

better applicable for two color arrays. First, the model is fitted to the background 

subtracted foreground values of each color channel separately and second, instead 



of using a kernel density parameter estimator for the model parameters, a 

maximum-likelihood estimator is used See (Ritchie et al., 2007) for details.

 

 “rma” – Employs the background correction step of the RMA method for 

Affymetrix arrays.

 

 

5.1.2.2 Within-array normalization 

This option is only available for two color microarrays and normalizes the log2 ratios of 

expression of the red and green channel signals so that the average log2-ratio is zero. This 

is again based on the assumption that most of the genes do not show differential 

expression in a given experiment. The options available will be described in the 

following: 

 

1) “median” – Simply subtracts the median from the calculated M values. 

 

2) “loess” – Uses global loess regression (a robust smoothing algorithm based on 

local polynomial regression) to compute a trend in the data. Each M value is 

normalized by subtracting the corresponding the corresponding value of the loess 

curve from it according to N =M loess (A) , where N is the normalized value, M 

the raw value and loess(A) the loess curve as a function of the average signal 

intensity A. 

 

3) “printtiploess” – Performs the loess normalization separately for each print tip 

group. This approach accounts better for local spatial variation in background 

signal intensity and it therefore used as the default method for within-array 

normalization in Robin. 

 

4) “robustspline” – This method does also normalize print tip group-wise but uses 

regression splines and empirical Bayes-based shrinkage instead of loess curves for 

normalization. 

 

5.1.2.3 Between-array normalization 

In addition to normalizing within each two color array, the user can choose to also 

perform between array normalization. When analyzing single channel arrays, this is the 

only normalization approach available. Applying between array normalization makes 

sure that the expression intensities (resp. log2 ratios on two color arrays) have equal 

distributions across a series of chips. Several options are available for two color arrays 

while the list is limited to scale and quantile normalization for single channel arrays.  

 

1) “scale” – Log2 ratios of expression are scaled to have the same median absolute 

deviation (MAD) across arrays. 

 



2) “quantile” – Adjusts to intensities to have the same empirical distribution across 

chips. This is the normalization method that is also used by the RMA procedure 

for Affymetrix chips.  

 

3) “Aquantile” – Is a variation  of the quantile method that only adjusts the A values 

to display the same distribution. 

 

4) “Tquantile” – Does a quantile normalization separately for each of the target 

groups defined on the  targets designer panel in the two color chip analysis 

workflow (see 3.2). 

 

5) “Gquantile” and “Rquantile” – Quantile normalization is performed for the green 

(“G”) or red (“R”) color channel only. This approach makes sense if a common 

reference design has been employed in the experiment that is being analyzed and 

the reference sample was always hybridized in the same color channel. 

 

Both normalization approaches can be combined when working with two color channels. 

In this case, within array normalization and background correction are performed prior to 

between array normalization steps. The preset default settings should give robust 

expression estimates in most cases. However, given the heterogeneity of two color and 

single color technical chip platforms, different settings may perform better for individual 

chip types. When trying to assess whether the chosen settings give decent results in a 

given experiment, it helps to inspect the shape of the MA plots after normalization. If the 

distribution of values displays the expected (often “trumpet”-like) shape and the plot is 

centered on the M = 0 line (see Figure 13), the settings seem to be sound. If in doubt, 

please seek advice from an experienced statistician. 

 

6 Analysis of differential gene expression 

The statistical methods Robin employs to identify differentially expressed genes are 

based on two different approaches: Linear modeling (limma, (Smyth, 2004)) and rank 

product-based analysis (RankProd, (Breitling et al., 2004; Hong et al., 2006)). When 

analyzing Affymetrix data, the user can choose between these two options with the 

restriction that rank product-based inference of differential expression is only available 

when two groups are to be compared. When working with two color microarrays, rank 

product-based analysis is not available yet. The two methods differ in that they take two 

completely different approaches to the detection of differentially expressed genes. While 

the linear model-based method relies on advanced statistical modelling and Bayesian 

inference, the rank product approach more resembles biological reasoning on the data. 

More specifically, limma assumes a linear model E y j[ ] = X j  where yj contains the 

expression data for each gene, X is the design matrix describing the systematic part of the 

data and j is a vector of coefficients (representing the response level for gene j on chip 

g). The biologically interesting contrasts of the coefficients are defined by j =C
T

j , 

where C is the contrast matrix (for a more detailed in-depth discussion please refer to 

(Smyth, 2004)).  



 

The rank product approach, on the other hand, assumes for an experiment in which n 

genes are investigated in k replicates, that the probability to find a gene at the top position 

of a ranked list of up- or down regulated genes is exactly 1/n
k
. The combined probability 

of finding a gene at a certain position in the ranked list, when k replicates i and ni genes 

are measured can be expressed as the rank product RPg
up / down

= i=1

k
(ri,g

up / down
/ni) , where 

ri,g
up / down is the position of gene g in the ranked list of decreasing (up) or increasing (down) 

fold changes in the ith replicate (see (Breitling et al., 2004) for further details not to be 

reproduced here).  

Since rank product-based analysis is limited to comparing two experimental conditions, 

the linear model-based analysis offers far more options and flexibility with respect to the 

available settings and design of the experiment (e.g. if two factors, like genotype and 

treatment, are being varied in an experiment and the user is interested in the interaction 

effect).  

 

7 Output 

 

At the end of each analysis run, Robin asks for a directory to save all files that are 

relevant to the experiment. These include processed raw input data files (only in the case 

of two color and generic single channel analysis), R source code for quality assessment 

and main analysis, various informative plots illustrating the quality check results and 

main analysis results and tabular text data files containing the full results in all detail. The 

following table lists all files that are generated. The “Type” column refers to the 

microarray type for which this kind of output file can be generated (G = all platforms, 

A=Affymetrix, T=two color microarrays, S=generic single channel arrays). Parts of the 

file names written in italics refer to variable text: EXP_NAME: The name of the 

experiment as entered by the user when choosing the name of the output folder. TMP: An 

automatically generated unique identifier used for temporary files (the quality check 

output files are first stored in the system’s temporary folder and are later copied to the 

quality checks folder of the output directory). GRP: Reference to the group names as 

assigned by the user when sorting individual raw files (e.g. .cel files) into groups of 

biological replicates. 

 

 

Filename Folder Description Type 

EXP_NAME_results.txt . This file contains the normalized log2 fold 

change in expression values for all 

comparisons defined in the design step of 

the experiment. In addition, a second column 

containing a flag value denoting the 

statistical significance of each log fold 

change is generated for each gene. A value 

of 0 means not significant, while -1 and 1 

mean significantly up- or down-regulated. 

 

 

G 



EXP_NAME_summary.txt . A text file summarizing and documenting 

the analysis inputs, program settings and 

warnings generated during the workflow.   

 

G 

EXP_NAME_design.png . PNG representation of the experiment 

design as configured on the graphical 

designer panel in the last step of the analysis 

workflow. 

 

G 

redundant.probes.info.txt detailed_results If redundant probe names are found in the 

input data of the generic single channel rank 

product analysis, this file is generated. It 

contains the redundant identifiers, number of 

spots found and the median values for each 

of the identifiers on each chip. 

 

S 

full_table_GRPa-

GRPb.txt 

detailed_results Tables giving the complete statistical results 

for each of the comparisons made. The 

columns contain from left to right: 

(Feature.ID) A unique identifier for the 

oligonucleotide probes or probe sets on the 

chips; (logFC) the log2-fold change in 

expression; (AveExpr) average normalized 

expression value; (t) t-statistic; (P.Value, 

adj.P.Val) raw and Benjamini-Hochberg-

corrected p-values for differential 

expression; (B) the log-odds for differential 

expression. 

 

G 

top100table_GRPa-

GRPb.txt 

detailed_results Contains the same data columns as the full 

tables but excludes probes / probesets that 

do not fulfill the chosen p-value and or 

minimal log2-fold change cut offs.  

 

 

EXP_NAME.PAcalls.table

.txt 

detailed_results Only generated when analyzing Affymetrix 

chips. Table containing the present / absent 

calls for each probeset on each chip in the 

experiment plus the attached p-values that 

are calculated using the MAS5calls function. 

 

A 

raw_METHOD_normalize

d_expression_values.txt 

. Expression estimates for each 

probe/probeset on each chip after 

normalization. 

 

A 

TMP_hclust.png qualitychecks Hierarchical clustering of the normalized 

expression values. The clustering is based on 

1-pearson correlation of expression as the 

distance measure. Full linkage hierarchical 

clustering is performed. 

 

A, S 

TMP_pcaplot.png qualitychecks 

 

Scatter plot of the first two components 

obtained in a principal component analysis 

of the normalized expression values. 

 

 

A, S 



TMP_boxplot.png qualitychecks 

 

Boxplots of the unnormalized signal 

intensities on each chip 

 

G 

TMP_hist.png qualitychecks Smoothed density plots showing the signal 

intensity distribution on each chip prior to 

normalization. 

 

A, S 

TMP_density.png qualitychecks These plots display the signal intensity 

distribution for two color arrays analogous 

to the ”hist” plots for Affymetrix and other 

single channel arrays. Smoothed 

distributions are plotted separately for both 

color channels 

 

T 

TMP_maplot1..n.png qualitychecks MA plots of chip 1 to n. When analyzing 

single channel chips, these plots show the 

log2-fold change in expression of each 

individual chip when compared to a 

synthetic chip constructed from the median 

expression values of all chips in the 

experiment. In the case of two color arrays 

the M values correspond to log log2 ratio 

between the green and red channel signal 

intensities prior to and after normalization. 

Each plot also shows the following quality-

associated parameters: 

 

“I” – Absolute value of the numerical 

integral of the lowess fit curve over the M=0 

line. Values greater than 1 are considered to 

indicate lower quality. 

 

“%>LFC1”  - Percentage of 

probes/probesets displaying a log2-fold 

change greater than 1. Based on the 

assumption that most of the genes will not 

show differential expression, a warning will 

be issued of more than 5% of the probes 

show an absolute log2 fold change higher 

than 1 (meaning 2-fold up- or 

downregulation). 

 

“median” – Gives the median value of M. In 

an ideal experiment this should be zero. 

 

G 

TMP_plm1..n.png qualitychecks Shows pseudo images of the model weights 

for each probe after fitting linear probe level 

models. Low weights are indicated by 

stronger red or green color 

 

A 

TMP_rle.png qualitychecks Boxplots of the relative logarithmic 

expression (RLE) values on each chip. The 

boxes should be centered around zero. 

 

 

 

A 



TMP_nuse.png qualitychecks Boxplots of the normalized unscaled 

standard errors (NUSE) of the probe level 

models on each chip. The plots should be 

centered around zero and display 

comparable spread. 

 

A 

TMP_scat1..n1..m.png qualitychecks Scatter plots of all possible combinations of 

two chips. The normalized expression values 

are plotted against each other.  

 

A, S 

TMP_rna.png qualitychecks RNA degradation plot (only available for 

Affymetrix arrays). Shows mean intensities 

of probes in all probesets ordered from the 

5’ to the 3’ end of the target sequence. This 

plot allows a good overview of the global 

RNA quality on the chips.  

 

A 

TMP_bground.png qualitychecks Pseudo images of the background signal 

intensities measured on two color or non-

Affymetrix single channel arrays.  

 

T, S 

TMP_mvalues.png qualitychecks Pseudo image plots of the unnormalized M 

(= log2 ratios of green and red signal) values 

of two color chips. 

 

T 

XYZ_robin input Cleaned-up copies of the input raw data files T, S 

 

EXP_NAME.main.analysis

.R 

source The R script file containing code for the 

main analysis. The file can be used as a 

starting point for customizations of the 

analysis. Please note that the file contains 

some hard coded paths. 

 

G 

qualityChecks.R source Quality checks R source code file. 

 

G 

MAplot_GRPa-GRPb.png plots The plots folder contains some informative 

plots on the results of the main analysis. MA 

plots are generated for each contrast that was 

defined on the experiment designer panel. 

Genes that are significantly differentially 

expressed according to the statistical 

analysis are highlighted by red circles. 

 

G 

vennDiagram_down/total/

up.png 

plots Venn diagrams showing the number of  

significantly up- down- and total regulated 

genes for up to four contrasts. 

 

G 

PCAplot.png plots Principal component analysis plot analogous 

to the plots generated in the quality checks 

section. This plot does in addition  highlight 

the groups of replicate experiments as 

defined on the groups panel. 

A, S 
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